Боковые стороны трапеции равны 7 и 11, а основания — 5 и 15. Прямая, проведённая через вершину меньшего основания параллельно большей боковой стороне, отсекает от трапеции треугольник. Найдите его стороны.
Решение:
Пусть AD и BC — основания трапеции ABCD, причём
AB = 7, BC = 5, CD = 11, AD = 15.
Через вершину C проведём прямую, параллельную боковой стороне AB. Пусть эта прямая пересекает основание AD в точке K. Тогда ABCK — параллеллограмм. Поэтому
CK = AB = 7, DK = AD - AK = AD - BC = 15 - 5 = 10.
Ответ: 7, 10, 11.