Ребра AD и ВС пирамиды DABC равны 24 и 10 см. Расстояние между серединами ребер BD и АС равно 13 см. найдите угол между прямыми AD и ВС.
Пусть Е - середина ребра АС, F- середина ребра BD, EF=13.
Прямые АD и ВС - скрещивающиеся, а угол между скрещивающимися прямыми равен углу между параллельными им прямыми, проходящими через одну точку. Проведем через точку Е прямую EG||BC и пусть G - точка пересечения этой прямой со стороной АВ. Очевидно, что G - середина АВ. Соединим G c F. так как G и F -середины АВ и ВD соответственно, то GF - средняя линия треугольника АВD, а значит, GF||AD. Таким образом, угол между прямыми AD и ВС равен углу между GF и GE, то есть углу FGE.
Учитывая, что GF и GE - средние линии, имеем GF=12, GE=5, откуда по теореме, обратной теореме Пифагора, ?FGE=90°.