"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ЛЕМНИСКАТНЫЕ ФУНКЦИИЗначение ЛЕМНИСКАТНЫЕ ФУНКЦИИ в математической энциклопедии: лемнискатические функции, - частный случай эллиптических функций, возникающий при обращении эллиптич. интеграла частного вида Эти интегралы появились впервые при вычислении длины дуги Бернулли лемнискаты в работах Дж. Фаньяно (G. Fagnano, 1715). Сами Л. ф. ввел К. Гаусс (С. Gauss, 1797). Л. ф. две: Л. ф. выражаются через Якоби эллиптические функции с модулем В теории Вейерштрасса эллиптических функций Л. ф. появляются вт. н. гармоническом случае, когда инварианты g2=4, g3=0. Лит.:[1] Уиттекер Э.-Т., В а т с о н Д. Н., Курс современного анализа, пер. с англ., 2 изд., ч. 2, М., 1963, гл. 22. Е. Д. Соломенцев. |
|
|