Середину более длинной боковой стороны прямоугольной трапеции соединили с вершинами трапеции. При этом трапеция разделилась на три равнобедренных треугольника. Найдите величину острого угла трапеции.
Решение
Пусть M – середина большей боковой стороны CD прямоугольной трапеции ABCD с основаниями BC < AD , N – середина меньшей боковой стороны AB , а треугольники BCM , AMB и AMD – равнобедренные. По теореме о средней линии трапеции MN || BC , и т.к. AB BC , то MN AB . Медиана MN треугольника AMB является его высотой, значит, этот треугольник равнобедренный, причём < BAM = < ABM . Угол BCD – тупой, значит, это угол при вершине равнобедренного треугольника BCM Обозначим < CBM = < CMB = ? . Тогда
< BCM = 180o - 2?, < ADC = 180o - < BCM = 180o-(180o - 2?)=2?,
< BMN = < MBC = ?, < AMB = 2 < BMN = 2?,
< AMD = 180o - < BMC - < AMB = 180o-3?, < DAM = < AMN = ?.
Предположим, что AD=DM . Тогда < DAM = < AMD , или ? = 180o-3? , т.е. 2? = 90o , что невозможно. Пусть теперь AM=MD . Тогда < DAM = < ADM , или ? = 3? , т.е. ? = 0o , что также невозможно. Если же AD = AM , то
< ADM= < AMD , или 180o-3?= 2? , откуда находим, что ? = 36o . Следовательно, < ADC = 2? = 72o .
Ответ: 72o .