Введение
Феномен золотого сечения известен человечеству очень давно.
Его тайну пытались осмыслить Платон, Евклид, Пифагор, Леонардо да Винчи, Кеплер и многие другие крупнейшие мыслители человечества. Они неразрывно связывали золотое сечение с понятием всеобщей гармонии, пронизывающей вселенную от микромира до макрокосмоса.
Классическими проявлениями золотого сечения являются предметы обихода, скульптура и архитектура, математика, музыка и эстетика. В предыдущем столетии с расширением области знаний человечества резко увеличилось количество сфер, где наблюдается феномен золотой пропорции. Это биология и зоология, экономика, психология, кибернетика, теория сложных систем, и даже геология и астрономия.
Ежегодно издаются несколько книг посвященных этой проблеме, постоянно расширяя область приложения золотого сечения. Авторы этих исследований связывают золотое сечение с такими несовместимыми, на первый взгляд понятиями, как красота, асимметрия, рекурсия, самоорганизация и пропорция. За последние годы появились интересные интернет-сайты посвященные золотому сечению.
Живая природа построена на простых принципах и может быть описана элементарными моделями. В этой работе мы хотим сделать попытку системного анализа феномена золотого сечения и высказать несколько предположений, позволяющих объяснить всеобщий характер золотой пропорции.
Гипотеза: Золотое сечение является отображением окружающегося мира через цепочку глаз – мозг – рука.
Объект исследования: наличие Золотого сечения в архитектуре.
Предметы исследования: архитектура.
Цели: поиск закономерностей золотого сечения в архитектуре.
Задачи: найти определение Золотого сечения, изучить литературу, связанную с Золотым сечением, провести эксперименты, разработать собственный проект с элементами Золотого сечения, сделать выводы.
Было найдено определение Золотого сечения, изучена литература, связанная с Золотым сечением, проведены эксперименты, разработан собственный проект с элементами Золотого сечения, были сделаны выводы.
В ходе исследования были выявлены следующие результаты: закономерности Золотого сечения заложены в подсознании человека, использовались и используются архитекторами в своих работах.
Мы исследовали Золотое сечение в архитектуре, нами были выявлены признаки Золотого сечения в разных эпохах. Так же по результатам проведенного исследования мы подтвердили гипотезу, что Золотое сечение – отображение окружающегося мира через цепочку глаз – мозг – рука.
Определение
В математике пропорцией (лат. proportio) называют равенство двух отношений: a:b=c:d.
Отрезок прямой АВ можно разделить на две части следующими способами:
- на две равные части – АВ : АС = АВ : ВС;
- на две неравные части в любом отношении (такие части пропорции не образуют);
- таким образом, когда АВ : АС = АС : ВС.
Последнее и есть золотое деление или деление отрезка в крайнем и среднем отношении.
Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему a:b=b:c или с:b=b:а.
Рис. 1. Геометрическое изображение золотой пропорции.
Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки.
Рис. 2. Деление отрезка по золотому сечению. BC = 1/2 AB; CD = BC
Из точки В восстанавливается перпендикуляр, равный половине АВ. Полученная точка С соединяется отрезком с точкой А. На отрезке AC от точки С откладывается отрезок, равный ВС, заканчивающийся точкой D. На отрезке AB от точки А откладываем отрезок АЕ, равный отрезку AD. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции.
Отрезки золотой пропорции выражаются бесконечной иррациональной дробью AE = 0,618..., если АВ принять за единицу, ВЕ = 0,382... Для практических целей часто используют приближенные значения 0,62 и 0,38. Если отрезок АВ принять за 100 частей, то большая часть отрезка равна 62, а меньшая – 38 частям.
Свойства золотого сечения описываются уравнением:
x2 – x – 1 = 0.
Решение этого уравнения: