Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

ВЫПУКЛЫХ МНОЖЕСТВ ПРОСТРАНСТВО

Значение ВЫПУКЛЫХ МНОЖЕСТВ ПРОСТРАНСТВО в математической энциклопедии:

линейное - пространство, элементами к-рого служат классы эквивалентных пар выпуклых множеств в линейном локально выпуклом топологич. пространстве. Пара трактуется как "разность" , причем пары по определению эквивалентны, если , где сложение множеств понимают как замыкание векторной суммы. В линейном В. м. п. вводятся сложение, вычитание, умножение на число и топология, причем В. м. п. оказывается локально выпуклым топологическим пространством. Вводят, кроме того, отношение частичного упорядочения, аналогичное включению множеств. Линейные В. м. п. рассматривались также в нелокально выпуклых линейных пространствах.

Лит.:[1] Пинскер А. Г., "Тр. Ленингр. инж.-экон. ин-та", 1966, т. 63, с. 13-17. В. А. Залгаллер.