"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ВЫПУКЛАЯ ОБОЛОЧКАЗначение ВЫПУКЛАЯ ОБОЛОЧКА в математической энциклопедии: множества М -минимальное выпуклое множество, содержащее М;то есть пересечение всех содержащих Мвыпуклых множеств. В. о. множества Мобозначается convM. В евклидовом пространстве Е n В. о. есть множество возможных положений центра тяжести массы, различным образом распределяемой в М. Каждая точка В. о. есть центр тяжести массы, сосредоточенной не более чем в n+1 точках (теорема Каратеодори). Замыкание В. о. наз. замкнутой В. о. Она представляет собой пересечение всех содержащих Мзамкнутых полупространств или совпадает со всем Е n. Часть границы В. о., не прилегающая к М, имеет локально строение развертывающейся гиперповерхности. В Е n В. о. ограниченного замкнутого множества Месть В. о. крайних точек М(крайней наз. точку множества М, не являющуюся внутренней ни для какого отрезка, принадлежащего М). Кроме евклидова пространства, В. о. обычно рассматривают в локально выпуклых линейных топологич. пространствах L. В LВ. о. компактного множества Месть замкнутая В. о. его крайних точек (теорема Крейна - Мильмана). Лит.:[1] Эдварде Р., Функциональный анализ. Теория и приложения, пер. с англ., М., 1969; [2] Фелпс Р., Лекции о теоремах Шоке, пер. с англ., М., 1968. В. А. Залгаллер. |
|
|