"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ВТОРАЯ КРАЕВАЯ ЗАДАЧАЗначение ВТОРАЯ КРАЕВАЯ ЗАДАЧА в математической энциклопедии: - одна из краевых задач для дифференциальных уравнений с частными производными. Пусть, напр., в ограниченной области , в каждой точке границы Г к-рой существует нормаль, задано эллиптич. уравнение 2-го порядка где В. к. з. для уравнения (*) в области наз. следующая задача: из множества всех решений уравнения (*) требуется выделить те, к-рые в каждой граничной точке имеют производные по внутренней конормали N и удовлетворяют условию где j(x) - заданная функция. В. к. з. наз. также задачей Неймана. Лит.:[1] Бицадзе А. В., Краевые задачи для эллиптических уравнении второго порядка, М., 1966; [2] Владимиров В. С., Уравнения математической физики, 2 изд., М., 1971; [3] Миранда К., Уравнения с частными производными эллиптического типа, пер. с итал., М., 1957; [4] Петровский И. Г., Лекции об уравнениях с частными производными, 3 изд., М., 1961. А. К. Гущин. |
|
|