"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ВРАЩЕНИЕ ВЕКТОРНОГО ПОЛЯЗначение ВРАЩЕНИЕ ВЕКТОРНОГО ПОЛЯ в математической энциклопедии: на плоскости- одна из его гомотопически инвариантных характеристик. Пусть X- векторное поле в области Gевклидовой плоскости , - угол между Xи нек-рым фиксированным направлением; тогда вращением векторного поля Xназ. деленное на приращение угла при обходе замкнутой ориентированной кривой , вдоль к-рой . Так, напр., если L - гладкая класса кривая, то вращение касательного к L(или нормального к L).поля (или ) вдоль Lравно деленной на полной кривизне L:если X- векторное поле (с возможными изолированными особыми точками) в G с жордановой границей то В. в. п. на равно сумме индексов особых точек Xв замыкании G. (см. Особой точки индекс). При гомотопной деформации L , не проходящей через особые точки X, В. в. п. не изменяется. Обобщением понятия В. в. п., заданного на n-мерном многообразии М, расположенном в , является степень отображения его в (N - n )-мерную сферу; она связана с эйлеровой характеристикой. См. также Пуанкаре теорема, Кронекера формула. М. И. Войцеховский. |
|
|