"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ВПОЛНЕ ПРИВОДИМОЕ МНОЖЕСТВОЗначение ВПОЛНЕ ПРИВОДИМОЕ МНОЖЕСТВО в математической энциклопедии: множество Млинейных операторов в топологическом векторном пространстве Е, обладающее тем свойством, что всякое замкнутое подпространство в Е, инвариантное относительно М, имеет в Еинвариантное дополнение. В гильбертовом пространстве Евсякое множество M, симметричное относительно эрмитова сопряжения, есть В. п. м. (в частности, всякая группа унитарных операторов есть В. п. м.). Представление j алгебры А(группы, кольца и т. д.) наз. вполне приводимым, если множество вполне приводимо. Если А - компактная группа или полупростая связная группа (алгебра) Ли, то всякое представление Ав конечномерном векторном пространстве вполне приводимо (п р и-нцип полной приводимости). Лит.:[11 Желобенко Д. П., Компактные группы Ли и их представления, М., 1970. Д. П. Желобенко. |
|
|