"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ВПОЛНЕ ИНТЕГРИРУЕМОЕ ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕЗначение ВПОЛНЕ ИНТЕГРИРУЕМОЕ ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ в математической энциклопедии: уравнение вида для к-рого через каждую точку нек-рой области в пространстве проходит (n-1)-мерное интегральное многообразие. Необходимым и достаточным условием полной интегрируемости дифференциального уравнения является условие Фробениуса ( - знак внешнего произведения, см. [1]). Для n=3 это условие принимает вид: Иногда вместо уравнения (*) рассматривают систему уравнений (см. [2]): Условия полной интегрируемости в этом случае принимают вид: Семейство интегральных многообразий В. и. д. у. представляет собой слоение (см. [3]). Лит.:[1] Frobenius G., "J. reine und angew. Math.", 1877, Bd 82, S. 230-315; [2] Немыцкий В. В., "Матем. сб.", 1948, т. 23 (65), с. 161-86; [3] Новиков С. П., "Тр. Моск. матем. об-ва", 1965, т. 14, с. 248-78. Л. Э. Рейзинъ. |
|
|