"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ВОЗМУЩЕНИЕ ЛИНЕЙНОЙ СИСТЕМЫЗначение ВОЗМУЩЕНИЕ ЛИНЕЙНОЙ СИСТЕМЫ в математической энциклопедии: - отображение f в системе обыкновенных дифференциальных уравнений Обычно возмущение предполагается малым в к.-л. смысле, напр.,
Решение линейной системы с возмущением (1) и решение линейной системы с одним и тем же начальным значением при связаны соотношением наз. формулой вариации постоянных, где - фундаментальная матрица линейной системы (3). А. М. Ляпунов (см. [1]) доказал асимптотическую устойчивость тривиального решения системы (1) (см. Асимптотически устойчивое решение), если соотношение (2) справедливо равномерно по t, а матрица A(t).постоянна и все действительные части ее собственных значений отрицательны; если же хоть одна из них положительна, то тривиальное решение неустойчиво. Исследование периодического решения системы описывающей колебательный процесс, преобразованием приводится в общем случае к исследованию линейной системы с возмущениями, правая часть к-рой периодична по t(см. [3]). Лит.:[1] Ляпунов А. М., Общая задача об устойчивости движения, М.-Л., 1950; [2] Вылов Б. Ф. [и др.], Теория показателей Ляпунова и ее приложения к вопросам устойчивости, М., 1966; [3] Понтрягин Л. С., Обыкновенные дифференциальные уравнения, 4 изд., М., 1974. Л. Э. Рсйзинь. |
|
|