"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ВИНЕРОВСКИЙ ПРОЦЕССЗначение ВИНЕРОВСКИЙ ПРОЦЕСС в математической энциклопедии: однородный гауссов-ский процесс X(t) с независимыми приращениями. В. п. служит одной из математич. моделей для процесса броуновского движения. Простым преобразованием В. п. может быть превращен в "стандартный" В. п. , , для к-рого при таких средних значениях и дисперсиях приращений это единственный непрерывный с вероятностью 1 процесс с независимыми приращениями. Ниже под В. п. будет пониматься именно этот процесс. В. п. определяется также как гаус-совский случайный процесс с нулевым математич. ожиданием и корреляционной функцией В. п. может быть определен как однородный марковский процесс с переходной функцией где переходная плотность есть фундаментальное решение параболического дифференциального уравнения
и описывается формулой
Переходная функция инвариантна относительно преобразований сдвига в фазовом пространстве: где Г - уобозначает множество В. п. является непрерывным аналогом случайного блуждания частицы, к-рая в дискретные моменты времени (кратные ) в результате случайного воздействия каждый раз независимо от предшествующих обстоятельств смещается на величину точнее, если при
- случайная траектория движения такой частицы на отрезке [0, 1] (здесь - целая часть nt, при ), а - соответствующее распределение вероятностей в пространстве непрерывных функций то распределение вероятностей траектории В. п. является предельным (в смысле слабой сходимости) для распределений Как функция со значениями в гильбертовом пространстве . всех случайных величин в к-ром скалярное произведение определено формулой
В. п. допускает следующее каноническое представление: где - независимые гауссовские величины: - собственные функции оператора В, определенного формулой:
в гильбертовом пространстве всех интегрируемых с квадратом (относительно лебеговской меры) функций на отрезке [0, 1]. Для почти всех траекторий В. п, имеют место следующие соотношения: - закон повторного логарифма; что характеризует модуль непрерывности на отрезке ; В применении к В. п. вида
закон повторного логарифма записывается в форме: Характер смещения броуновской частицы за конечное время tможет быть описан с помощью распределения вероятностей максимума : фиксировано, а также с помощью распределения времени т первого достижения броуновской частицей фиксированной точки фиксировано, (закономерности В. п. остаются без изменения при преобразовании фазового пространства ). Совместное распределение точки максимума и самого максимума шах имеет плотность вероятности
а отдельно взятая точка (с вероятностью 1 имеется лишь один максимум на отрезке ) распределена по арксинуса закону. с плотностью вероятности Из приведенных выше формул легко выводятся следующие характерные свойства В. п. Броуновская траектория является нигде не дифференцируемой, причем при выходе из к.-л. точки хэта траектория за сколь угодно малое время с вероятностью 1 бесконечно много раз пересекает "уровень" х(возвращаясь в исходную точку); с течением времени tброуновская траектория обходит все точки х, точнее , с вероятностью 1 (при этом вероятное значение для больших химеет порядок x2); рассматриваемая на фиксированном отрезке [0, t], эта траектория имеет тенденцию достигать экстремальных значений вблизи концевых точек s=0 и s=t. Для В. п. как марковского однородного процесса существует инвариантная мера : к-рая в силу упомянутого выше свойства инвариантности переходной функции совпадает с лебеговской мерой на прямой: Время , проведенное броуновской частицей в множестве Аза промежуток от 0 до Т, таково, что с вероятностью 1 для любых ограниченных борелевских множеств . Аналогом В. п. для векторного параметра являются случайные поля, введенные П. Леви (P. Levy, см. [31). Лит.:[1] Ито К., Маккий Г., Диффузионные процессы и их траектории, пер. с англ., М., 1968; [2] Прохоров Ю. В., Розанов Ю. А., Теория вероятностей, 2 изд., М., 1973; [3] Levy P., Prossesus stochastiques et mouve'ment brownien, 2 ed., P., 1965; [4] Павлов В. П., Броуновское движение, в кн.: БСЭ, 3 изд., т. 4. Ю. А. Розанов, |
|
|