"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ВИНЕРА ТАУБЕРОВА ТЕОРЕМАЗначение ВИНЕРА ТАУБЕРОВА ТЕОРЕМА в математической энциклопедии: если и преобразование Фурье функции не обращается в нуль, а - функция из такая, что свертка стремится к нулю при , то для любой свертка стремится к нулю при . Установлена Н. Винером [1]. Эта теорема обобщена на случай любой коммутативной локально компактной некомпактной группы G: если х - суммируемая относительно Хаара меры функция на Gи преобразование Фурье функции хне обращается в нуль на группе характеров группы , а функция упринадлежит пространству и свертка стремится к нулю на бесконечности на G, то свертка стремится к нулю на бесконечности на G для всех суммируемых функций на G. Эта теорема основана на регулярности групповой алгебры коммутативной локально компактной группы и на возможности спектрального синтеза в групповых алгебрах для замкнутых идеалов, принадлежащих лишь конечному числу регулярных максимальных идеалов [3]. Лит.:[1] Wiener N.. "Ann. Math.", 1932, v. 33, p. 1 - 100; [2] Наймарк М. А., Нормированные кольца, 2 изд., М., 1968; [3] Бур баки Н., Спектральная теория, пер. с франц., М., 1972. А. И. Штерн. |
|
|