Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

ВЕРОНЕЗЕ ОТОБРАЖЕНИЕ

Значение ВЕРОНЕЗЕ ОТОБРАЖЕНИЕ в математической энциклопедии:

специальное регулярное отображение проективного пространства; названо в честь Дж. Веронезе (G. Veronese). Пусть n, т - целые положительные числа, а - проективные пространства над произвольным полем (или над кольцом целых чисел), рассматриваемые как схемы, - проективные координаты в - проективные координаты в . Отображение Веронезе есть морфизм


задаваемый формулами В инвариантных терминах В. о. может быть определено как регулярное отображение, задаваемое полной линейной системой , где - гиперплоское сечение в . В. о. является замкнутым вложением, его образ наз. многообразием Веронезе и задается уравнениями


где Напр., есть кривая с уравнением Степень многообразия Веронезе равна . Для любой гиперповерхности


в ее образ относительно В. о. является сечением многообразия Веронезе гиперплоскостью


Этот факт позволяет использовать В. о. для сведения нек-рых задач о гиперповерхностях к случаю гиперплоских сечений.

Лит.:[1] Шафаревич И. Р., Основы алгебраической геометрии, М., 1972. И. В. Долгачев.