"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ВЕЕРЗначение ВЕЕР в математической энциклопедии: финитарный поток, - поток . такой, что для всякого узла из существует лишь конечное число натуральных k, для к-рых является узлом . На языке формального интуиционистского математич. анализа формула , выражающая понятие "функция азадает В.", записывается в виде где означает "функция азадает поток". Теорема Брауэра о веере: если имеется правило, согласно к-рому каждому элементу В. сопоставлен нек-рый объект, напр, натуральное число, то найдется натуральное г такое, что для всякого элемента В. этот объект определяется уже первыми z значениями элемента. Теорема Брауэра используется в доказательстве многих специфически интуиционистских фактов, таких, как равномерная непрерывность всякой действительнозначной функции, заданной на отрезке. В формальном интуиционистском математич. анализе теорема Брауэра о В. выводится обычно с помощью бар-индукции и принципа непрерывности Брауэра (см. Интуиционизм). На языке этой формальной теории теорема о В. может быть записана следующим образом: Лит.:[1] Kleene S. С., Vesley R. E., The foundations of intuitionistic mathematics, Amst., 1965. А .Г. Драгалин. |
|
|