"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ВЕДДЕРБЕРНА - АРТИНА ТЕОРЕМАЗначение ВЕДДЕРБЕРНА - АРТИНА ТЕОРЕМА в математической энциклопедии: теорема, полностью описывающая строение ассоциативных артиновых колец без нильпотентных идеалов; ассоциативное кольцо Rудовлетворяет условию минимальности для правых идеалов и не имеет нильпотентных идеалов в том и только том случае, если Rесть прямая сумма конечного числа идеалов, каждый из к-рых изоморфен полному кольцу матриц конечного порядка над подходящим телом, причем это разложение в прямую сумму единственно с точностью до порядка следования слагаемых. Эта теорема получена первоначально Дж. Вед-дерберном (J. Wedderburn) и доказана в окончательной формулировке Э. Артином [1]. Лит.:[1] Аrtin E., "Bull. Amer. Math. Soc.", 1950, V.56, № 1, p. 65-72. к. А. Жевлаков. |
|
|