"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ЭНДОМОРФИЗМОВ КОЛЬЦОЗначение ЭНДОМОРФИЗМОВ КОЛЬЦО в математической энциклопедии: ассоциативное кольцо End А=Ноm(A, А), состоящее из всех морфизмов . в себя, где А - объект нек-рой аддитивной категории С. Умножение в End Асовпадает с композицией морфизмов, а сложение - со сложением морфизмов, определенным аксиомами аддитивной категории. Тождественный морфизм 1A является единицей кольца End A. Элемент из End Аобратим тогда и только тогда, когда - автоморфизм объекта А. Если Aи В- нек-рые объекты категории С, то группа Ноm ( А, В )обладает естественной структурой правого модуля над кольцом End Аи левого модуля над кольцом End В. Пусть - ковариантный (соответственно контравариантный) аддитивный функтор из аддитивной категории Св аддитивную категорию С'. Тогда для любого объекта Аиз С функтор Тиндуцирует естественный гомоморфизм (соответственно естественный антигомоморфизм) End Лит.:[1] Фейс К., Алгебра: кольца, модули и категории, т. 1-2, пер. с англ., М., 1977-79; [2] Мaмфорд Д., Абелевы многообразия, пер. с англ., М., 1971; [3] Итоги науки и техники. Алгебра. Топология. Геометрия, т. 21, М., 1983, с. 183-254. |
|
|