"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
АВТОРЕГРЕССИОННЫЙ ПРОЦЕССЗначение АВТОРЕГРЕССИОННЫЙ ПРОЦЕСС в математической энциклопедии: случайный процесс значения к-рого удовлетворяют при нек-рых постоянных уравнению авторегрессии где р - нек-рое положительное число, а величины обычно предполагаются некоррелированными и одинаково распределенными со средним 0 и дисперсией Если все нули функции комплексного аргумента лежат внутри единичного круга, уравнение имеет решение где связаны с соотношением Пусть, напр., является процессом белого шума со спектральной плотностью ; тогда единственным А. п., удовлетворяющим уравнению , будет стационарный в широком смысле процесс со спектральной плотностью если не имеет действительных нулей. Автоковариации процесса удовлетворяют рекуррентному соотношению и в терминах имеют вид Параметры авторегрессии связаны с коэффициентами автокорреляции процесса матричным соотношением
где - матрица коэффициентов автокорреляции (уравнение Юна - Уокера). Лит.:[1] Grenander U., Rosenblatt M., Statistical analysis of stationary time series, Stockh., 1956; [2] Xeннан Э., Анализ временных рядов, пер. с англ., М., 1964. А. В. Прохоров. |
|
|