"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ЭЙЛЕРА МЕТОД СУММИРОВАНИЯЗначение ЭЙЛЕРА МЕТОД СУММИРОВАНИЯ в математической энциклопедии: - один из методов суммирования числовых и функциональных рядов. Ряд
суммируем методом суммирования Эйлера (( Е, q )-суммируем) к сумме S, если Впервые метод при q=1 применялся Л. Эйлером (L. Euler) для суммирования медленно сходящихся и расходящихся рядов. На произвольные значения дметод был распространен К. Кноппом [1], поэтому Э. м. с. при любом qназ. также методом суммирования Эйлера - Кноппа. Э. м. с. регулярен при (см. Регулярные методы, суммирования);если ряд ( Е, q )-суммируем, то он суммируем и методом ( Е, q' )при q'>q>- 1 к той же сумме (см. Включение методов суммирования). При q=0 суммируемость Э. м. с. ряда (*) означает сходимость этого ряда. Если ряд (E,q )-суммируем, то его члены а п удовлетворяют условию . Э. м. с. применяется также для аналитич. родолжения функции, определенной степенным рядом, за круг сходимости. Так, ряд -суммируем к сумме 1/(1- z) в круге с центром в точке -qи радиусом, равным q+1. Лит.:[1] Кnорр К., лMath. Z.
|
|
|