"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ШТРАФНЫХ ФУНКЦИЙ МЕТОДЗначение ШТРАФНЫХ ФУНКЦИЙ МЕТОД в математической энциклопедии: метод сведения условно-экстремальных задач к задачам безусловной оптимизации. Проиллюстрировать Ш. ф. м. можно на примере задач математического программирования. Рассматривается задача минимизации функции на множестве из п-мер-ного евклидова пространства. Штрафной функцией, или штрафом (за нарушение ограничений i - 1, 2, ..., т), наз. функция зависящая от хи числового параметра обладающая следующими свойствами: если и если Пусть является любой точкой безусловного глобального минимума функции . а X*- множеством решений исходной задачи. Функцию выбирают таким образом, чтобы расстояние между точками и множеством X* стремилось к нулю при либо, если это не удается гарантировать, чтобы выполнялось соотношение
Для функции при рассматривается задача отыскания таких i = l, 2, . . ., т, что
для всех Если то каждая слабо предельная точка произвольной последовательности является решением задачи (*) т, кроме того, Лит.:[1] Моисеев Н. Н., ИваниловЮ. П., Столярова Е. М., Методы оптимизации, М., 1978; [2] Васильев Ф. П., Численные методы решения экстремальных задач, М., 1980; [3] Фиакко А. В., Мак-Кормик Г. П., Нелинейное программирование. Методы последовательной безусловной минимизации, пер. с англ., М., 1972; [4] Сеа Ж., Оптимизация, пер. с франц., М., 1973. |
|
|