Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

ШЕРКА ПОВЕРХНОСТЬ

Значение ШЕРКА ПОВЕРХНОСТЬ в математической энциклопедии:

- минимальная поверхность (м. п.), найденная X. Шерком (Н. Scherk, 1834). Она определяется уравнением и является единственной м. п., представляемой как переноса поверхность вида z=f(x)+g(y). Ш. п. и ее модификации служат для построения вспомогательных функций, позволяющих находить примеры неразрешимости задачи Дирихле для уравнения Эйлера - Лагранжа м. п. над невыпуклыми областями.
III. н. обладает рядом интересных свойств: она - полная поверхность бесконечного рода, содержащая счетное число прямых; универсальная накрывающая к ней дает пример полной м. п. конформно-гиперболического типа; ее сферический образ не содержит ровно четыре точки: Последнее свойство Ш. и. усматривается из ее представления через Вейерштрасса формулы с где wизменяется в плоскости с четырьмя исключенными точками и По аналогии с этим представлением строятся обобщенные Ш. п. с


являющиеся полными м. п., нормали к к-рым лупускают