Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

БЭРА ТЕОРЕМА

Значение БЭРА ТЕОРЕМА в математической энциклопедии:

1) Б. т. о полных пространствах: любая счетная система открытых и всюду плотных в данном полном метрическом пространстве множеств имеет непустое, п даже всюду плотное в этом пространстве пересечение. Эквивалентная формулировка: полное метрич. пространство не может быть представлено в виде счетной суммы своих нигде не плотных подмножеств. Установлена Р. Бэром [1].

Лит.: [1] Вairе R., "Ann. di mat.", 1899, (3), t. 3, p. 67.

П. С. Александров.

2) Б. т. о полунепрерывных функциях: пусть А - подмножество метрич. пространства Ми f: ; тогда условие: для любого числа амножество (соответственно ) замкнуто в А, - необходимо и достаточно для того, чтобы была полунепрерывна сверху (соответственно снизу) на А. Доказана Р. Бэром для (см. [1]).

Из Б. т. следует, что полунепрерывные функции входят в первый Бэра класс. Имеет место более сильное утверждение: полунепрерывная сверху (снизу) функция, не принимающая значение есть предел монотонно невозрастающей (неубывающей) последовательности непрерывных функций.

Лит.:[1] Бэр Р., Теория разрывных функций, пер. с франц., М.- Л., 1932; [2] Натансон И. П., Теория функций вещественной переменной, 2 изд., М., 1957.

И. А. Виноградова.