"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ФУНКЦИОНАЛЬНОЕ ИСЧИСЛЕНИЕЗначение ФУНКЦИОНАЛЬНОЕ ИСЧИСЛЕНИЕ в математической энциклопедии: гомоморфизм нек-рой алгебры функций Ав алгебру L(X)непрерывных линейных операторов в топологич. векторном пространстве X. Ф. и.-один из основных инструментов общего спектрального анализа и теории банаховых алгебр, к-рый позволяет использовать в этих дисциплинах функционально-аналитич. методы. Обычно A-топологическая (в частности, нормированная) алгебра функций на нек-ром подмножестве Кпространства содержащая многочлены переменных z1, . .., zn (часто К - плотное подмножество), так что Ф. и. является естественным продолжением полиномиального исчисления коммутирующих операторов в этом случае говорят, что набор Т =(T1,.... Т п )допускает А- исчисление, и пишут А-исчисление для Т - это род спектральной теоремы, так как соответствие где -двойственность между Xи X*, определяет слабое операторно-значное А-распределение, перестановочное с Т.
Ф. и. Рисса - Данфорда (n=1, -все функции, голоморфные на спектре оператора Т)приводит к формуле
где -резольвента оператора,- контур, охватывающий вплоть до к-рого регулярна функция f. Формулы последнего типа для многих переменных (операторов) зависят от записи линейного функционала на и способа определения совместного спектра набора Т= (Т 1, ...,Т n )(от определения зависит и объем Ф. и.).
где -разложение единицы Т, позволяет распространить Ф. п. Рисса-Данфорда для . на более широкий класс функций. В частности, если то Тдопускает Ф. и. на классе раз непрерывно дифференцируемых функций. Если Т - оператор скалярного типа, то в эту формулу можно подставить ограниченные борелевские функции на В частности, такое Ф. и. допускают нормальные операторы в гильбертовом пространстве. Верно и обратное: если оператор Тдопускает Ф. и. (для операторов в рефлексивных пространствах достаточно предполагать существование Ф. и. на классе непрерывных функций), то Т- спектральный оператор скалярного типа (в гильбертовом пространстве - линейно подобный нормальному оператору). а оператор Тудовлетворяет условию
С другой стороны, более широкие (чем исчисления возникают как следствия оценок операторных многочленов р(Т); напр., если X - гильбертово пространство, то неравенство Неймана - Хайнца Лит.:[1] Данфорд Н., Шварц Дж., Линейные операторы, пер. с англ., ч. 1, М., 1962, ч. 3, М., 1974; [2] Бурбаки Н., Спектральная теория, пер. с франц., М., 1972; [3] Wаelbroeck L., Etude spectrale des algebres completes, Brux. 1960; [4] Тауlоr J. L., лActa math.
|
|
|