Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

ФУНКЦИОНАЛЬНАЯ ОТДЕЛИМОСТЬ

Значение ФУНКЦИОНАЛЬНАЯ ОТДЕЛИМОСТЬ в математической энциклопедии:

- свойство множеств Аи В топологич. пространства X, когда существует непрорывная действительная функция f на Xтакая, что замыкания множеств f(A)и f(B) (по отношению к обычной топологии действительной прямой не пересекаются. Напр., пространство вполне регулярно, если всякое замкнутое множество отделимо от каждого одноточечного множества, с ним не пересекающегося. Пространство нормально, если функционально отделимы любые два его замкнутые непересекающиеся подмножества. Если в пространстве функционально отделимы каждые два одноточечных (различных) множества, то оно наз. функционально хаусдорфовым. Содержание данных определений не изменяется, если вместо непрерывных действительных функций привлечь непрерывные отображения в плоскость, в отрезок или в гильбертов кирпич.

Лит.:[1] Архангельский А. В., Пономарев В., И., Основы общей топологии в задачах и упражнениях, М., 1974; [2] Келли Дж., Общая топология, пер. с англ., 2 изд., М., 1981.
А. В. Архангельский.