"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ФУНКЦИОНАЛЬНАЯ ОТДЕЛИМОСТЬЗначение ФУНКЦИОНАЛЬНАЯ ОТДЕЛИМОСТЬ в математической энциклопедии: - свойство множеств Аи В топологич. пространства X, когда существует непрорывная действительная функция f на Xтакая, что замыкания множеств f(A)и f(B) (по отношению к обычной топологии действительной прямой не пересекаются. Напр., пространство вполне регулярно, если всякое замкнутое множество отделимо от каждого одноточечного множества, с ним не пересекающегося. Пространство нормально, если функционально отделимы любые два его замкнутые непересекающиеся подмножества. Если в пространстве функционально отделимы каждые два одноточечных (различных) множества, то оно наз. функционально хаусдорфовым. Содержание данных определений не изменяется, если вместо непрерывных действительных функций привлечь непрерывные отображения в плоскость, в отрезок или в гильбертов кирпич. Лит.:[1] Архангельский А. В., Пономарев В., И., Основы общей топологии в задачах и упражнениях, М., 1974; [2] Келли Дж., Общая топология, пер. с англ., 2 изд., М., 1981. |
|
|