"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
БУЛЕВО КОЛЬЦОЗначение БУЛЕВО КОЛЬЦО в математической энциклопедии: - ассоциативное кольцо К, все элементы к-рого идемпотентны, т. е. для любого . Йюбое Б. к. коммутативно и является под-прямой суммой полей из двух элементов. При этом для всех . Конечное Б. к. является прямой суммой полей и потому имеет единицу. Б. к.- это кольцевой вариант булевых алгебр, а именно: любая булева алгебра является Б. к. с единицей относительно операций сложения и умножения, определяемых правилами где - дополнение элементам. Нуль и единица кольца совпадают с нулем и единицей алгебры. Обратно, любое Б. к. с единицей есть булева алгебра относительно операций
Лит.:[1] Stone М. Н., "Trans. Amer. Math. Soc.", 1936, v. 40, № 1,p. 37-111; [2] Жегалкин И. И., "Матем. сб.", 1927, т. 34, в. 1, с. 9-28; [3] Владимиров Д. А., Булевы алгебры, М., 1969; [4] Сикорский Р., Булевы алгебры, пер. с англ., М., 1969. Ю. М. Рябухин. |
|
|