"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ФИНСЛЕРОВО ПРОСТРАНСТВО ОБОБЩЕННОЕЗначение ФИНСЛЕРОВО ПРОСТРАНСТВО ОБОБЩЕННОЕ в математической энциклопедии: пространство с внутренней метрикой, подчиненное нек-рым ограничениям на поведение кратчайших (т. е. кривых, длины к-рых равны расстояниям между концами). К таким пространствам относятся G-пространства (см. Геодезических геометрия )и, в частности, финсдеровы пространства, так что рассматриваемые пространства можно характеризовать как обобщение финслеровых, а не только римановых пространств. Ф. п. о. отличаются от финслеровых не только большей общностью, но и тем, что их определяют и исследуют, исходя из метрики, без координат. |
|
|