"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ФИНИТНО АППРОКСИМИРУЕМАЯ ГРУППАЗначение ФИНИТНО АППРОКСИМИРУЕМАЯ ГРУППА в математической энциклопедии: группа, аппроксимируемая конечными группами. Пусть G - группа, - отношение (иначе говоря, предикат) между элементами и множествами элементов, определенное на Gи всех ее гомоморфных образах (напр., бинарное отношение равенства элементов, бинарное отношение "элемент хвходит в подгруппу y", бинарное отношение сопряженности элементов и т. п.). Пусть К - класс групп. Говорят, что группа Gаппроксимируется группами из К относительно r, если для любых элементов и множеств элементов из G, не находящихся в отношении существует такой гомоморфизм группы С на группу из К, при к-ром образы этих элементов и множеств тоже не находятся в отношении Аппроксимируемость относительно равенства элементов наз. просто аппроксимируемостью. Группа тогда и только тогда аппроксимируется группами класса K, когда она вкладывается в декартово произведение групп из К. Финитная аппроксимируемость относительно обозначается в частности, если пробегает предикаты равенства, сопряженности, вхождения в подгруппу, вхождения в конечно порожденную подгруппу и т. п., то получаются свойства (и классы) и т. гг. Из наличия этих свойств в группе вытекает разрешимость соответствующей алгоритмич. проблемы. Лит.:[1] Каргаполон М. И., Мерзляков Ю. И., Основы теории групп, 3 изд., М., 1982. |
|
|