"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ФАТУ ДУГАЗначение ФАТУ ДУГА в математической энциклопедии: для функции f(z), мероморфной в области Gплоскости комплексного переменного z,- достижимая дуга границы области G, обладающая тем свойством, что она входит в состав границы нек-рой жордановой области в к-рой f(z), ограничена. Иногда это определение расширяют, заменяя условие ограниченности f(z) в gболее общим условием неплотности в плоскости w образа области gпри отображении Усиленная теорема Фату из теории граничных свойств аналитич. ций утверждает, что если - дуга Фату (даже в расширенном смысле) для функции f(z), мероморфной в круге , то почти в каждой хочке функция f(z) имеет конечный предел при стремлении z к изнутри . по любому углу с вершиной образованному парой хорд круга D. Лит.:[1] Коллингвуд Э., Ловатер А., Теория предельных множеств, пер. с англ., М., 1971; [2] Привалов И. И., Граничные свойства аналитических функций, 2 изд., М.-Л., 1950; [3] Голузин Г. М., Геометрическая теория функций комплексного переменного, 2 изд., М., 1966. |
|
|