"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
УСТОЙЧИВОЕ РАСПРЕДЕЛЕНИЕЗначение УСТОЙЧИВОЕ РАСПРЕДЕЛЕНИЕ в математической энциклопедии: распределение вероятностей, обладающих свойством, что для любых a1>0, b1, a2>0, b2 имеет место соотношение
где d - любое действительное число, и
Число наз. показателем устойчивого распределения. У. р. с показателем является нормальное распределение, примером У. р. с показателем служит Коши распределение, У. р. является вырожденное распределение на прямой, У. р.- безгранично делимое распределение, и У. р. с показателем имеет Леви каноническое представление схарактеристиками
- любое действительное число.
р(х) - плотность У. р. Явный вид плотностей У. р. известен лишь в немногих случаях. Одной из основных задач теории У. р. является описание их притяжения областей.
где р(х)-плотность спектрально положительного У. р. с показателем -действительное число, у многозначных функции выбираются те ветви, для к-рых In s действительный, а при s > 0. Лит.:[1] Гнеденко Б, В., Колмогоров А. Н., Предельные распределения для сумм независимых случайных величин, М.-Л., 1949; [2] Прохоров Ю. В., Розанов Ю. А., Теория вероятностей, 2 изд., М., 1973; [3] Ибрaгимов И. А., Линник Ю. В., Независимые и стационарно связанные величины, М., 1965; [4] Скороход А. В., Случайные процессы с независимыми приращениями, М., 1964: [5] Золотарёв В. М., Одномерные устойчивые распределения, М., 1983. |
|
|