"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
УСЛОВНАЯ СХОДИМОСТЬЗначение УСЛОВНАЯ СХОДИМОСТЬ в математической энциклопедии: ряда - свойство ряда, заключающееся в том, что существует сходящийся ряд, полученный из данного нек-рой перестановкой его членов. Числовой ряд
безусловно сходится, если он сходится, и сходится любой ряд, полученный перестановкой его членов, причем сумма любого такого ряда одна и та же, иначе говоря, сумма безусловно сходящегося ряда не зависит от порядка его членов. Если ряд (*) сходится, но не безусловно, то он наз. условно сходящимся. Для того чтобы ряд (*) условно сходился, необходимо и достаточно, чтобы он сходился, но не абсолютно, т. е. чтобы
Если члены ряда (*) являются действительными числами, через обозначены его неотрицательные члены, а через - отрицательные, то ряд (*) будет условно сходиться тогда и только тогда, когда оба ряда расходятся (при этом порядок слагаемых в этих рядах безразличен).
(это есть обобщение теоремы Римана). п =1, 2, ..., условно сходится тогда и только тогда, когда ряд расходится. Если же пространство Xбесконечномерное, то в нем существуют безусловно сходящиеся ряды не являющиеся абсолютно сходящимися, т. е. такие, что для них Л. Д. Кудрявцев. |
|
|