Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

УОЛЛА ГРУППА

Значение УОЛЛА ГРУППА в математической энциклопедии:

- абелева группа, к-рая сопоставляется кольцу с инволюцией, являющейся антиизоморфизмом. В частности, она определена для группового кольца где - фундаментальная группа пространства. Если X - Пуанкаре комплекс, то в этой группе определяются препятствия к существованию простой гомотонич. эквивалентности в классе бордизмов из Это препятствие наз. Уолла инвариантом, см. [1].
Пусть R - кольцо с инволюцией: являющейся антиизоморфизмом, т. е. Если Р - левый R-модуль, то HomR (P, R) является левым R-модулем относительно действия Этот модуль обозначается через Р*. Для конечнопорожденного проективного R-модуля Римеется изоморфизм и можно отождествить Ри Р** по этому изоморфизму.
Квадратичной (-1)k -формой над кольцом с инволюцией R наз. пара где Р - конечнопорожденный проективный R-модуль, а - такой гомоморфизм, что Морфизмом форм наз. гомоморфизм для к-рого Если - изоморфизм, то форма наз. невырожденной. Лагранжевой плоскостью невырожденной формы наз. прямое слагаемое для к-рого Если - прямое слагаемое, и то Lназ. сублагранжевой плоскостью. Лагранжевы плоскости L, G формы наз. дополнительными, если L+G=P и
Пусть L - проективный R-модуль. Невырожденная (-1)k -форма наз. гамильтоновой, а и - ее дополнительными лагранжевыми плоскостями. Если L - лагранжева плоскость формы то она изоморфна гамильтоновой форме Выбор дополнительной к Lлагранжевой плоскости равносилен выбору изоморфизма при к-ром эта дополнительная плоскость отождествляется с L*.
Пусть - абелева группа, порожденная классами эквивалентности (при изоморфизме) невырожденных квадратичных ( -1)k -форм с соотношениями: 1) 2) если имеет лагранжеву плоскость. Тройка (Н; F, L), состоящая из невырожденной (-1)k -формы Ни пары лагранжевых плоскостей F, L, наз. (-1)k -формацией. Формация наз. тривиальной, если Fи Lдополнительны, и элементарной, если существует лагранжева плоскость формы Н, дополнительная и к F, и к L. Тривиальная формация G, G )наз. гамильтоновой. Изоморфизмом формаций наз. изоморфизм форм для к-рого f(F) = Fl, f(L) = L1. Всякая тривиальная формация изоморфна гамильтоновой.
Пусть U2k+1(R)- абелева группа, порожденная классами эквивалентности (при изоморфизме) (-1)k -формаций, со следующими соотношениями:

1)

2) если формация элементарна или тривиальна. Группы Un(R)и наз. группами Уолла кольца R.

Лит.:[1] Wall С. Т. С., Surgery on compact manifolds, L.- N. Y., 1970; [2] Raniсki A., лProc. bond. Math. Soc.