"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
УНИВЕРСАЛЬНАЯ ФУНКЦИЯЗначение УНИВЕРСАЛЬНАЯ ФУНКЦИЯ в математической энциклопедии: для данного класса Кфункций типа - функция F(y, х1, . . ., х п )типа такая, что для всякой найдется при к-ром
Здесь - множество натуральных чисел, а равенство (*) означает, что функции f(x1, . . ., х n )и F(i, x1, . . ., х n) определены на одних и тех же наборах аргументов x1, . . ., х n и их значения на этих наборах совпадают. Иногда в определении У. ф. требуется, чтобы для всех функция F(i, x1, . . ., х n )принадлежала классу К(см. [4]). Имеются также др. варианты определения У. ф. (см. [1], [2]). Лит.:[1] Петер Р., Рекурсивные функции, пер. с нем., М., 1954; [2] Клини С. К., Введение в метаматематику, пер. с англ., М., 1957; [3]Успенский В. А., Лекции о вычислимых функциях, М., 1960: [4] Мальцев А. И., Алгоритмы и рекурсивные функции, М., 1965. |
|
|