"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ТУЭ - ЗИГЕЛЯ - РОТА ТЕОРЕМАЗначение ТУЭ - ЗИГЕЛЯ - РОТА ТЕОРЕМА в математической энциклопедии: если - алгебраич. иррациональность, и сколь угодно мало, то существует лишь конечное число целых решений . и q>0 (ри qвзаимно просты) неравенства
Эта теорема является наилучшей в своем роде - число 2 в показателе степени уменьшить нельзя. Т.-3.-Р. т. есть усиление теоремы Лиувилля (см. Лиувилля число). Результат Лиувилля последовательно усиливали А. Туэ [1], К. Зигель [2] и, наконец, К. Рот [3]. А. Туэ доказал, что если -алгебраич. число степени то неравенство |
|
|