"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
БОРЕЛЯ ПРЕОБРАЗОВАНИЕЗначение БОРЕЛЯ ПРЕОБРАЗОВАНИЕ в математической энциклопедии: интегральное преобразование вида где - целая функция экспоненциального типа. Б. п. есть частный случай Лапласа преобразования. Функция наз. ассоциированной функцией (по Борелю) с f(z). Если
то ряд сходится при , где - тип функции . Пусть - наименьшее выпуклое замкнутое множество, содержащее все особенности функции , - опорная функция множества и - индикатриса роста функции . Тогда Если интегрирование в Б. п. происходит по лучу то соответствующий интеграл сходится в полуплоскости Пусть С - замкнутый контур, охватывающий D. Тогда При дополнительных условиях из этой формулы могут быть выведены и другие представления. Так, пусть имеется класс целых функций экспоненциального типа , для к-рых Этот класс совпадает с классом функций , допускающих представление где
Лит.:[1] Воrе1 Е., Lemons sur les series divergentes, 2 ed., P., 1928; [2] Джpбашян M. M.. Интегральные преобразования и представления функций в комплексной области, М., 1966. А. Ф. Леонтьев. |
|
|