"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
TOPЗначение TOP в математической энциклопедии: - тело, полученное от вращения замкнутого круга вокруг оси, лежащей в плоскости этого круга и его не пересекающей. Центр круга описывает окружность, наз. осевой окружностью Т., ее центр наз. центром Т. Плоскость осевой окружности Т. наз. экваториальной плоскостью Т., а лежащие на Т. границы кругов, получающихся из данного круга его вращением,- меридианами Т.
а кривизна Т.- частный случай вращения поверхности и каналовой поверхности.
Естественное обобщение Т.- многомерный тор - топологическое произведение нескольких экземпляров окружности S, т. е. многообразия всех комплексных чисел, равных по модулю единице. Естественная гладкость на Sопределяет на Т. структуру гладкого многообразия, а естественная мультипликативная структура на Sиндуцирует на Т. структуру связной компактной коммутативной вещественной группы Ли. Последние группы играют важную роль в теории групп Ли, и их также называют торами (см. Ли компактная группа, Максимальный тор, Картана подгруппа). Четномерный Т. допускает комплексную структуру; при выполнении нек-рых условий такая структура превращает Т. в абелево многообразие (см. также Комплексный тор). В структурной теории алгебраич. групп у Т., как у вещественной группы Ли, имеется важный аналог - алгебраический тор (см. также Алгебраическая группа, Линейная алгебраическая группа). Алгебраич. тор сам не является Т. (в случае основного поля комплексных чисел), но обладает подгруппой, к-рая является Т. и на к-рую он стягивается (как топологич. пространство). Точнее, алгебраич. тор, как группа Ли, изоморфен произведению нек-рого Т. и нескольких экземпляров мультипликативной группы положительных действительных чисел. М. И. Войцеховский, В. Л. Попов. |
|
|