"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ТОНЕЛЛИ ТЕОРЕМАЗначение ТОНЕЛЛИ ТЕОРЕМА в математической энциклопедии: о конечности площади непрерывной поверхности, заданной явным уравнением: пусть действительно-значная функция f( х, у )задана на прямоугольнике тогда: а) для того чтобы непрерывная поверхность z=f ( х, у), имела конечную площадь, равную S(F, D0), необходимо и достаточно, чтобы функция f(x, у )имела конечную Тонелли плоскую вариацию на D0; б) если имеет место утверждение а), то
причем площадь
в) для того чтобы имело место равенство S(F, D0)= L(F, D0), необходимо и достаточно, чтобы функция F( х, у )была абсолютно непрерывной на D0,а для этого необходимо и достаточно, чтобы площадь S(F, D )была абсолютно непрерывной функцией прямоугольника
Эта теорема доказана Л. Тонелли (см. [1] - [3], а также [4]), а утверждение а) даже для поверхностей, заданных параметрически, установлено С. Банахом [5] (в несколько иной терминологии). Лит.:[1] Tonelli L., лС .r. Acad. sci.
|
|
|