"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ТОЛЕРАНТНЫЙ ИНТЕРВАЛЗначение ТОЛЕРАНТНЫЙ ИНТЕРВАЛ в математической энциклопедии: случайный интервал, построенный по независимым одинаково распределенным случайным величинам, функция распределения к-рых F(х)неизвестна, и содержащий с заданной вероятностью по крайней мере долю р(0<р<1) вероятностной меры dF.
В таком случае, случайный интервал (T1, Т 2 )наз. толерантным интервалoм для функции распределения F(х), его границы Т 1 и Т 2 - толерантными пределами, а вероятность - коэффициентом доверия. Из (1) следует, что односторонние толерантные пределы Т 1 и Т 2 представляют собой не что иное, как обычные односторонние доверительные пределы с коэффициентом доверия для квантилей соответственно, т. е.
Пример. Пусть Х 1, Х 2, . . ., Х n -независимые случайные величины, подчиняющиеся нормальному закону, параметры к-рого аи неизвестны. В этом случае в качестве толерантных пределов Т 1 и Т 2 естественно выбрать функции, зависящие от достаточной статистики где
Именно, полагают и где константа k, называемая толерантным множителем, определяется как решение уравнения
В силу того, что случайная величина подчиняется бета-распределению с параметрами s-r и п-s+r+1, вероятность события выражается интегралом I1-р(п-s+r+1, s-r), где I х( а, b) - неполная бета-функция и, следовательно, в этом случае вместо (1) имеет место соотношение Лит.:[1] Большев Л. Н., Смирнов Н. В., Таблицы математической статистики, 2 изд., М., 1968; [2] Уилкс С., Математическая статистика, пер. с англ., М., 1967; [3] Дэйвид Г., Порядковые статистики, пер. с англ., М., 1979; [4] Murphy R. В., лAnn. Math. Statistics
|
|
|