"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ТИПИЧНО ВЕЩЕСТВЕННАЯ ФУНКЦИЯЗначение ТИПИЧНО ВЕЩЕСТВЕННАЯ ФУНКЦИЯ в математической энциклопедии: в области В- функция f(z), аналитическая в нек-рой области Вплоскости z, содержащей отрезки вещественной оси, если она вещественна на этих отрезках и Im f(z)x Im z>0 при Основной класс Т. в. ф.- класс Тфункций
регулярных и типично вещественных в круге |z|<l (см. [1]). Из определения класса Тследует, что с п, вещественны. Класс Тсодержит класс Sr функций
регулярных в в |z |<1, и таких, что вещественны. Пусть М 1 - класс функций неубывающих на [-1, 1] и таких, что Класс Тпредставим в |z|<l интегралом Стилтьеса (см. [2]): в том смысле, что для каждой функции найдется функция такая, что справедлива формула (1), и, обратно, какую бы ни взять, формула (1) определяет нек-рую функцию при любом фиксированном Наибольшей областью, в к-рой все функции класса Тоднолистны, является Исходя из представления (1) на классе Тбыл получен ряд теорем искажения и вращения (см. Искажения теоремы, Вращения теоремы). Для класса Тсправедливы точные оценки:
если nнечетно знак равенства в (2) слева достигается только для s(z, -1), справа - только для s(z, 1), в (3) слева - только для функций при нек-ром справа - только для Лит.:[1] Rogosinski W., лMath. Z.
|
|
|