"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ТЕНЗОРНЫЙ АНАЛИЗЗначение ТЕНЗОРНЫЙ АНАЛИЗ в математической энциклопедии: - обобщение векторного анализа, раздел тензорного исчисления, изучающий дифференциальные операторы, действующие на алгебре тензорных полей D(М)дифференцируемого многообразия М. Рассматриваются также операторы, действующие на более общие, чем тензорные поля, геометрич. объекты: тензорные плотности, дифференциальные формы со значениями в векторном расслоении и т. д. 1) Ковариантная производная вдоль векторного поля X - линейное отображение пространства векторных полей D1 (М)многообразия М, зависящее от векторного поля Xи удовлетворяющее условиям:
- объект связности Г. 2) Ли производная вдоль векторного поля X - отображение LX пространства D'(M), определяемое формулой где [X, Y] - коммутатор векторных полей X, Y. Этот оператор также однозначно продолжается до дифференцирования D(M), сохраняет тип тензоров и перестановочен со сверткой. В локальных координатах производная Ли тензора выражается так:
3) Внешний дифференциал (внешняя производная) - линейный оператор d, сопоставляющий внешней дифференциальной форме (кососимметричному ковариант-ному тензору) степени рформу такого же вида и степени р+1, удовлетворяющий условиям:
Оператор d- обобщение оператора rot. 4) Кривизны тензор симметричного невырожденного дважды ковариантного тензора gij представляет собой действие нек-рого нелинейного оператора R:
где
Лит.:[1] Рашевский П. К., Риманова геометрия и тензорный анализ, 3 изд., М., 1967; [2] Схоутен Я.-А., Тензорный анализ для физиков, пер. с англ., М., 1965; [3] Мак-Коннел А. <Д., Введение в тензорный анализ, пер. с англ., М., 1963; [4] Сокольников И. С., Тензорный анализ, пер. с англ., М., 1971. |
|
|