"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
ТЕНЗОРЗначение ТЕНЗОР в математической энциклопедии: на векторном пространстве Vнад нолем k - элемент tвекторного пространства
где V*=Hom(V, k) - пространство, сопряженное с V. Говорят, что тензор tявляется рраз контравариантным и qраз ковариантным или что tимеет тип ( р, q). Число р наз. контравариантной валентностью, q - ковариантной валентностью, а число р+q - общей валентностью тензора t. Пространство Т 0,0(V)отождествляется с k. Тензоры типа ( р,0) наз. контравариантными, типа (0, q) - ковариантными, а остальные - смешанными. Примеры Т. 1) Вектор пространства V(Т. типа , (1,0)). 2) Ковектор пространства V(Т. типа (0, 1)). 3) Каждый ковариантный Т. 4) Аналогично, каждый контравариантный Т. из Т р,0(V)определяет нек-рую р-линейную форму на V*, а если Vконечномерно, то верно и обратное. 5) Каждый Т. 6) Аналогично, любой Т. типа (1, 2) определяет в Vбилинейную операцию, т. е. структуру k-алгебры; при этом, если dim то любая структура k-алгебры в Vопределяется век-рым Т. типа (1, 2), к-рый наз. структурным тензором алгебры. Пусть Vконечномерно и v1, . .., vn - его базис, v1, . . ., vn - сопряженный базис пространства V*. Тогда Т. Здесь, как это часто делается в тензорном исчислении, применимо правило суммирования Эйнштейна: по каждой паре одинаковых индексов, один из к-рых - верхний, а другой - нижний, подразумевается суммирование от 1 до п. Обратно, если система п p+q элементов поля k, зависящая от базиса пространства V, изменяется при переходе от базиса к базису по формулам (1), то эта система является набором координат нек-рого Т. типа ( р, q).
в Поэтому для любых и элемент может рассматриваться как Т. типа (p+r, q+s), к-рый и наз. произведением тензоров tи и. Координаты произведения вычисляются по формуле
Пусть р>0, q>0 и пусть фиксированы числа и где Тогда определено линейное отображение
Оно наз. свертыванием (или сверткой) по -му контравариантному и -му ковариантному индексам. В координатах свертка записывается формулами
Напр., свертка типа (1, 1) есть след соответствующего линейного преобразования.
Пусть р>0 и пусть фиксирован индекс Тогда формула
определяет изоморфизм называемый опусканием -го контравариантного индекса. Иначе,
В координатах опускание индекса имеет вид
Аналогично определяется изоморфизм подъема -го ковариантного индекса
отображающий на В координатах подъем индекса записывается формулой
где В частности, подъем сначала 1-го, а потом и оставшегося ковариантного индекса метрич. тензора gприводит к Т, типа (2, 0) с координатами gkll (контравариантный метрический тензор). Иногда опущенный (поднятый) индекс не передвигают на первое (последнее) место, а пишут на том же месте в нижней (верхней) группе индексов, ставя на образовавшемся пустом месте точку. Напр., для координаты Т. записывают в виде
Любое линейное отображение векторных пространств над k естественным образом определяет линейные отображения Если f - изоморфизм, то определяется также линейное отображение
причем Соответствие обладает функторными свойствами. В частности, оно определяет линейное представление группы GL(V) в пространстве Tp,q(V)(тензорное представление). Лит.:[1] Бурбаки Н., Алгебра. Алгебраические структуры. Линейная и полилинейная алгебра, пер. с франц., М., 1962; [2] Гельфанд И. М., Лекции по линейной алгебре, 4 изд., М., 1971; [З] Кострикин А. И., Манин Ю. И., Линейная алгебра и геометрия, М., 1980; [4] Постниковы. М., Линейная алгебра и дифференциальная геометрия, М., 1979; [5] Рашевский П. К., Риманова геометрия и тензорный анализ, 3 изд., М., 1967. |
|
|