"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
СФЕРИЧЕСКАЯ ИНДИКАТРИСАЗначение СФЕРИЧЕСКАЯ ИНДИКАТРИСА в математической энциклопедии: изображение кривой трехмерного евклидова пространства с помощью отображения точек кривой в единичную сферу S2 какими-либо единичными векторами: касательным, главной нормали, бинормали этой кривой. Пусть r=r(s)-радиус-вектор кривой l, s- естественный параметр, R=R(s) - радиус-вектор сферич. отображения кривой . в единичную сферу S2 с центром в начале координат с помощью одного из указанных единичных векторов. Уравнение С. и. касательных определится уравнением С. и. главных нормалей - уравнением
а С. и. бинормалей - уравнением
Касательная к С. и. в соответствующих точках s параллельна главной нормали кривой. Кривизна и кручение С. и. выражаются через кривизну и кручение самой кривой. Для каждой из С. и. существует бесконечное множество кривых, для к-рых она является индикатрисой, т. е. кривая не может быть однозначно восстановлена по ее С. и. Лит.:[1] Выгодский М. Я... Дифференциальная геометрия, М.-Л., 1949. |
|
|