"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
СФЕРИЧЕСКАЯ ГАРМОНИКАЗначение СФЕРИЧЕСКАЯ ГАРМОНИКА в математической энциклопедии: степени k - сужение однородного гармонического многочлена h(k) (х)степени kот ппеременных х= (х 1..... х n )на единичной сфере Sn-1 евклидова пространства Е п, Bчастности, при п=3 С. г. - это классич. сферические функции. Пусть Основным свойством С. г. является свойство ортогональности: если и - С. г. соответственно степеней kи l, причем то
Простейшими С. г. являются зональные сферические гармоники. Для любого и любого k>0 существует зональная С. г. постоянная на любой параллели сферы Sn-1,ортогональной вектору t'. Зональные С. г. лишь постоянным множителем отличаются от Лежандра многочленов при п=3 или от ультрасферических многочленов при n>3:
Многочлены k= 0, 1, . . ., ортогональны свесом и образуют ортогональный базис пространства Если f( х') - функция из пространства L2(Sn-1), причем то существует единственный набор С. г. Y(k) такой, что Лит.:[1] Морс Ф. М., Фешбах Г., Методы теоретической физики, пер. с англ., т. 1-2, М., 1960; [2] Стейн И., Вейс Г., Введение в гармонический анализ на евклидовых пространствах, пер. с англ., М., 1974. |
|
|