"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
БОЛЬШИХ ОТКЛОНЕНИЙ ВЕРОЯТНОСТИЗначение БОЛЬШИХ ОТКЛОНЕНИЙ ВЕРОЯТНОСТИ в математической энциклопедии: вероятности вида где
- последовательность независимых случайных величин, а - две последовательности чисел такие, что по вероятности. Если случайные величины имеют одинаковое распределение с математич. ожиданием, равным нулю, и конечной дисперсией , то можно положить Особенно большое значение имеют Крамера теорема и ее усиления. В случаях, когда необходимо иметь гарантированные оценки для В. о. в., пользуются неравенствами типа Чебышева неравенств - это так наз. показательные оценки для Б. о. в. Напр., если случайные величины независимы, с вероятностью то при всех верна оценка правая часть к-рой экспоненциально убывает с ростом х. Лит.:[1] Лоэв М., Теория вероятностей, пер. с англ., М., 1962; [2] Петров В. В., Суммы независимых случайных величин, М., 1972; [3] Ибрагимов И. А., Линник Ю. В.. Независимые и стационарно связанные величины, М., 1965; [4] Прохоров Ю. В., в кн.: Итоги науки и техники, т. 10, М., 1972, с. 5-24; [5] Юринский В. В., "Теория вероятностей и её применения", 1974, т. 19, в. 1, с. 152-153. В. В. Петров, В. В. Юринский. |
|
|