"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
БОЛЬЦАНО - ВЕЙЕРШТРАССА ТЕОРЕМАЗначение БОЛЬЦАНО - ВЕЙЕРШТРАССА ТЕОРЕМА в математической энциклопедии: каждая ограниченная числовая последовательность содержит сходящуюся подпоследовательность. Теорема справедлива как для действительных, так и для комплексных чисел. Она обобщается на более общие объекты, напр.: всякое ограниченное бесконечное множество п- мерного евклидова пространства имеет в этом пространстве хотя бы одну предельную точку. Аналоги этого утверждения имеются и для еще более общих пространств. Эта теорема доказана Б. Больцано [1]; позже она была независимо получена К. Вейерштрассом (К. Weierstrass). Лит.:[1] Bо1zanо В., "Abhandl. Bochemische Ges. Wiss.", 1817. Л. Д. Кудрявцев. |
|
|