Математический словарь
" 0 C F G H K L N P S T W Z А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я

СТОКСА ФОРМУЛА

Значение СТОКСА ФОРМУЛА в математической энциклопедии:

- 1) формула, выражающая связь между потоком векторного поля через двумерное ориентированное многообразие и циркуляцию этого поля по соответствующим образом ориентированному краю этого многообразия. Пусть S - ориентированная кусочно гладкая поверхность, - единичная нормаль к поверхности S(в тех точках, конечно, где она существует), задающая ориентацию S, и пусть край поверхности Sсостоит из конечного числа кусочно гладких контуров. Через обозначен край поверхности S, ориентированный с помощью единичного касательного к нему вектора так, чтобы получающаяся ориентация края была согласована с ориентацией v поверхности S.
Если а= ( Р, Q, R)- непрерывно дифференцируемое в окрестности поверхности Sвекторное поле, то

(dS - элемент площади поверхности S, ds - дифференциал длины дуги края поверхности S)или, в координатном виде:

Предложена Дж. Стоксом (G. Stokes, 1854). 2)С. ф. наз. также обобщение формулы (*), представляющее собой равенство интеграла от внешнего дифференциала дифференциальной формы по ориентированному компактному многообразию Ми интеграла от самой формы по ориентированному согласованно с ориентацией многообразия Мкраю многообразия М:

Частными случаями этой формулы являются Ньютона - Лейбница формула, Грина формула, Остроградского формула.
Л. Д. Кудрявцев.