"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
СТИНРОДА ЗАДАЧАЗначение СТИНРОДА ЗАДАЧА в математической энциклопедии: - задача реализации циклов сингулярными многообразиями; поставлена Н. Стинродом (N. Steenrod, см. [1]). Пусть М - замкнутое ориентированное многообразие (топологическое, кусочно линейное, гладкое и т. д.), и пусть - его ориентация (здесь Н п (М) -n -мсриая гомологии группа многообразия М). Любое непрерывное отображение задает элемент С. з. состоит в описании тех гомологич. классов из X, называемых реализуемыми, к-рые получаются таким способом, т. е. имеют вид f*[M] для нeк-рых Миз данного класса. Все элементы групп Н 1 (Х)Н 2 (Х) реализуются. Лoбoй элемент группы Н п (Х), реализуется, но уже нек-рым отображением Пуанкаре комплекса Р. Кроме того, любой цикл можно реализовать псевдомногообразием. Можно также рассматривать неориентированные многообразия. Лит.:[1] Еi1еnbеrg S., лAnn. Math.
|
|
|