"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
СТЕРЕОГРАФИЧЕСКАЯ ПРОЕКЦИЯЗначение СТЕРЕОГРАФИЧЕСКАЯ ПРОЕКЦИЯ в математической энциклопедии: соответствие между точками сферы и плоскости, получаемое следующим образом; из нек-рой точки Sна сфере (центра С. п.) другие точки сферы проектируются лучами на плоскость, перпендикулярную радиусу сферы S0 (на рис. эта плоскость экваториальная, ее можно проводить и через конец S1 диаметра SS1). При этом каждая точка Мна сфере переходит в нек-рую определенную точку М' на плоскости. Если условиться считать, что точке Sсоответствует бесконечно удаленная точка плоскости, то соответствие точек сферы и плоскости будет взаимно однозначным. Основные свойства С. п.: 1) окружностям на сфере соответствуют окружности на плоскости, причем окружностям, проходящим через центр С. п., соответствуют окружности, проходящие через бесконечно удаленную точку, т. е. прямые; 2) при С. п. углы между линиями сохраняются.
Если точку трехмерного пространства задавать однородными координатами x1, х2, х3, х4 и считать, что уравнение сферы а точку плоскости - декартовыми прямоугольными координатами то связь между координатами точек сферы и плоскости задается формулами Лит.:[1] Клейн Ф., Высшая геометрия, пер. с нем., М.-Л., 1939; [2] В1asсhkе W., Vorlesungen uber Differentlal-Geometrie, Bd 3, В., 1929; [3] Бушманова Г. В., Норден А. П., Элементы конформной геометрии, Казань, 1972. |
|
|