"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
СТЕПАНОВА ПОЧТИ ПЕРИОДИЧЕСКИЕ ФУНКЦИИЗначение СТЕПАНОВА ПОЧТИ ПЕРИОДИЧЕСКИЕ ФУНКЦИИ в математической энциклопедии:
- класс Spl измеримых и суммируемых вместе со своей р-й степенью в каждом конечном интервале [ х, х+1]функций, к-рые могут быть в метрике пространства Степанова (см. ниже) аппроксимированы конечными суммами вида где а n - комплексные коэффициенты, - действительные числа. Расстояние в пространстве Степанова определяется формулой Функции класса могут быть также определены с помощью понятия почти периода. Функции класса обладают рядом свойств, аналогичных свойствам равномерных почти периодич. функций. Напр., функции класса Sp ограничены и равномерно непрерывны (в метрике соответствуют различным топологически эквивалентным предел f(х)сходящейся последовательности С. п. п. ф. {f п (х)} (в метрике Sp )принадлежит классу Sp. Если функция класса Sp равномерно непрерывна (в обычном смысле) на всей действительной оси, то она есть равномерная почти периодич. функция. Введены В. В. Степановым [1]. Лит:[1] Степанов В. В., лС. r. Acad. sci.
|