"
0
C
F
G
H
K
L
N
P
S
T
W
Z
А
Б
В
Г
Д
Е
Ж
З
И
Й
К
Л
М
Н
О
П
Р
С
Т
У
Ф
Х
Ц
Ч
Ш
Э
Ю
Я
СТЕКЛОВА ПРОБЛЕМЫЗначение СТЕКЛОВА ПРОБЛЕМЫ в математической энциклопедии: в теории ортогональных многочленов - задачи, в которых асимптотич. свойства ортогональных многочленов рассматриваются в зависимости от свойств и, в частности, от особенностей весовой функции и контура ортогональности.
возникает вопрос об условиях ограниченности последовательности { Р п (х)}в отдельной точке либо на нек-ром множестве либо на всем сегменте ортогональности. Этот вопрос важен потому, что при ограниченности последовательности { Р п (х)}на ряды Фурье по ортогональным многочленам переносятся нек-рые свойства тригонометрич. рядов Фурье.
Значение функции h0(t)в точке x, где рассматриваются неравенства (2) п (3), должно быть связано со значениями этой функции в точках, близких к x, и задача заключается в том, чтобы вывести (2) из (3) при минимальных ограничениях на функцию h0(t)в окрестности точки x (первая задача Стеклова). Имеются (см. [2], [5]) различные локальные и глобальные условия, при к-рых из (3) следует (2). В частности, если в (1) функция h0(x)положительна, непрерывна и удовлетворяет нек-рым дополнительным условиям, то для многочленов { Р п (х)}имеет место асимптотич. формула, из к-рой следует неравенство (2) при A = [-1, 1]. Кроме того, Стеклов [1] рассмотрел случаи алгебраич. нулей весовой функции и установил ряд результатов, послуживших началом двух направлений исследований. Одно из них характеризуется т. н. глобальными, или равномерными, оценками роста ортонорми-рованных многочленов, к-рые получаются при довольно общих условиях на весовую функцию (вторая задача Стеклова). Напр. (см. [2], с. 177), если неравенство (3) выполняется на всем сегменте [-1, 1], то существует такая последовательность что имеет место неравенство Лит.:[1] Стеклов В. А., лИзв. Российской Акад. наук
|
|
|